Генетика и эволюция

21.04.2012 Автор: Рубрика: BIP-IP»

5.5. Генетика и эволюция

 

5.5.1. Генетические признаки и носители

наследственной информации

 

Генетика – наука, изучающая наследственность и изменчивость живых организмов.

Наследственность заключается в способности организмов передавать особенности строения, функции, развития своему потомству. Наследственность обеспечивает преемственность между поколениями и обусловливает существование видов. Кроме того, выделяют понятие наследования, подразумевая конкретный способ передачи наследственной информации в ряду поколений, который может быть различен в зависимости от форм размножения, локализации генов в хромосомах и т. п. В основе наследственности лежат структурные и функциональные возможности генетической информации клеток.

Полинуклеотидная последовательность ДНК практически у всех организмов (исключение составляют РНК-содержащие ) являются первичным носителем генетической информации. Прокариоты и многие содержат одну молекулу ДНК, все участки которой кодируют макромолекулы. В эукариотических клетках генетический материал распределен в нескольких хромосомах. Хромосома содержит одну молекулу ДНК, полинуклеотидная последовательность которой состоит из участков, кодирующих и некодирующих макромолекулы. Некодирующие области ДНК играют структурную роль, позволяя участкам генетического материала упаковываться определенным образом. Другая часть некодирующей ДНК является регуляторной и участвует во включении генов, направляющих синтез белка.

Единицей наследственной информации, далее не делимыми в функциональном отношении, является ген, ответственный за формирование какого-либо элементарного признака. Ген представлен участком ДНК (реже РНК), кодирующий синтез одной макромолекулы: полипептида, рРНК, либо тРНК. Гены находятся в определенных участках хромосом – локусах. Гены в одинаковых локусах гомологичных хромосом и отвечающие за развитие вариантов какого-либо признака, называют аллельными. Их принято обозначать буквами латинского алфавита. Аллельные гены могут быть доминантными
или
преобладающими (А, В) или рецессивными или подавляемыми (a, b).

Доминантным называют аллель, обеспечивающий развитие признака как в гомо-, так и в гетерозиготном состоянии. Рецессивным – аллель, проявляющийся только в гомозиготном состоянии. Разные аллельные формы генов возникают в результате мутации – изменения структуры полинуклеотидной последовательности ДНК соответствующих локусов гомологичных хромосом. Ген может мутировать неоднократно, образуя много аллелей. Если в генофонде популяции существует серия мутаций какого-либо гена, определяющая многообразие вариантов признака, то имеет место явление множественного аллелизма. Однако при образовании следующего поколения аллели комбинируются попарно у каждого индивидуума.

Совокупность генов гаплоидного набора хромосом получила название генόм, а информация внеядерных ДНК (митохондрии, пластиды) – плазмон.

Фенотип – совокупность всех признаков и свойств организма.

Генотип совокупность всех генов организма.

Генофонд – совокупность генов популяции.

Кариотип – совокупность морфологических признаков хромосом вида (размер, форма, детали строения, число и т. д.).

Фенотип формируется в процессе реализации наследственной информации генотипа под воздействием факторов окружающей среды.

В живой природе существуют различия не только между индивидами разных видов, но и между индивидами одного и того же вида, сорта, породы и т.п. В пределах одного вида практически не встречаются совершенно идентичные особи. Эта изменчивость хорошо видна в пределах вида Homo sapiens – Человек разумный, каждый представитель которого имеет свои индивидуальные особенности.

Изменчивость – свойство живых организмов, противоположное наследственности. Оно заключается в изменении наследственных факторов и их проявлений в процессе развития организмов. Изменчивость неразрывно связана с наследственностью.

 

5.5.2. Основные генетические процессы. Биосинтез белка

 

Функциональные возможности генетического материала (способность сохраняться и воспроизводиться при смене клеточных поколений, реализовываться в онтогенезе и в ряде случаев изменяться) связаны с протеканием четырех генетических процессов – репликакции и репарации ДНК, биосинтеза белка и генетической рекомбинации.

Процесс генетической информации в клетках от ДНК через различные виды РНК к полипептидам и белкам называют экспрессией (проявлением) генов. Образующиеся при биосинтезе белка полипептидные цепи определяют признаки клеток, формирую белковые структуры или управляя процессами обмена веществ в качестве ферментов.

Репликация
ДНК
или генетическое удвоение ДНК происходит перед каждым нормально протекающим делением у эукариот (ДНК ядер, митохондрий, пластид), перед каждым делением прокариотических клеток и размножением ДНК-вирусов. Репликация является необходимой предпосылкой для сохранения имеющейся наследственной информации в ряду последовательных поколений клеток и организмов. Синтез макромолекул ДНК, а также РНК и белков происходит по типу матричного процесса, т.е. новые молекулы синтезируется в точном соответствии с химической структурой уже существующих молекул. Во время репликации ДНК каждая из двух ее цепей служит матрицей для образования новой цепи. В качестве предшественников (мономеров) для построения новой ДНК в клетке синтезируются трифосфаты четырех дезоксирибонуклеозидов: дАТФ, дТТФб дЦТФб дГТФ. Репликация ДНК начинается с раскручивания двойной спирали и разделения ее цепей за счет ферментативного разрыва водородных связей между спаренными азотистыми основаниями. Фермент ДНК-полимераза движется вдоль каждой из цепей, связывая между собой нуклеотиды, комплементарные нуклеотидам старой цепи.

Репарация ДНК
– способность молекул ДНК к самовосстановлению, «исправлению» возникающих в ее цепях изменений. В восстановлении участвуют не менее 20 белков: узнающих измененные участки ДНК и удаляющих их из цепи, восстанавливающих правильную последовательность нуклеотидов и сшивающих восстановленный фрагмент с остальной молекулой ДНК.

Биосинтез белка
– система сложных и последовательных реакций, в котором участвуют молекулы ДНК, все типы РНК, АТФ, ферменты, аминокислоты. Процесс состоит из нескольких этапов.

1. Транскрипциясинтез иРНК на матрице одной из цепей ДНК, т.е. переписывание информации, хранящейся в молекуле ДНК.
На ДНК-матрице образуется три вида РНК: информационная, или матричная (иРНК), транспортная (тРНК) и рибосомная (рРНК). Синтез иРНК состоит из фазы инициации, элонгации и терминации. Образующаяся «сырая» иРНК состоит из экзонов (кодирующих участков) и интронов (некодирующих участков). Далее процесс созревания иРНК подразумевает удаление из нее интронов – процессинг и сшивку экзонов – сплайсинг. В виде иРНК генетическая информация для синтеза полипептида передается от ДНК к рибосомам; тРНК доставляют к рибосомам аминокислоты (каждую аминокислоту доставляет особый, именно для нее предназначенный вид тРНК). Главным компонентом рибосом является рРНК.

2. Трансляцияпроцесс перевода генетической информации иРНК в последовательность аминокислот в полипептиде.
Процесс осуществляется в рибосомах на иРНК, в ней в виде последовательности нуклеотидов содержится генетический код о белковых молекулах.

В состав белков входит 20 аминокислот, их кодируют четыре вида нуклеотидов (аденин А, гуанин Г, цитозин Ц, урацил У) по три.

1 аминокислота = 3 нуклеотида

Три нуклеотида, образующих кодовый знак, называют триплетом. Например, ААА – лизин, АГА – аргинин, ГЦУ – аланин. Триплеты в молекуле РНК называют кодонами, а комплементарные им триплеты молекул тРНК – антидодонами. Из 64 триплетов 3 не кодируют аминокислоты – это стоп-сигналы (УАА, УАГ, УГА).

Многие аминокислоты кодируются более чем одним кодоном (АГУ, АГЦ, УЦУ и др. кодируют серин); в этом смысле код является вырожденным.

Генетический код одинаков, т.е. универсален для всех живых организмов (вирусов, бактерий, грибов, растений, животных) – во всех группах он слагается из одних тex же дезоксирибонуклеотидов, включающих два пуриновых осованиния (аденин А и гуанин Г) и два пиримидиновьгх (цитозин Ц и тимин Т).

Во всем органическом мире строго соблюдаются закономерности, называемые правила Чаграффа:

1. Сумма пуриновых нуклеотидов равна сумме пиримидиновых
нуклеотидов: (А + Г = Т + Ц).

2. Содержание аденина равно содержанию тимина: А = Т.

3. Содержание гуанина равно содержанию цитозина: Г = Ц.

4. Суммы Г + Т и А + Ц равны, т.е. Г + Т = А + Ц.

5. Содержание Г + Ц и А + Т может варьировать в довольно значительных пределах.

 

5.5.3. Основные законы генетики

 

Первый Менделя (закон единообразия): при скрещивании гомозиготных особей, все гибриды первого поколения единообразны. Например, при скрещивании растений с желтыми семенами АА и растений с зелеными семенами аа, гибриды первого поколения оказываются все с желтыми семенами Аа.

Второй закон Менделя (закон расщепления): при моногибридном скрещивании гетерозиготных особей во втором поколении наблюдается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

Третий закон Менделя (закон независимого наследования): гены разных аллельных пар и соответствующие им признаки наследуются независимо.

Взаимодействие аллельных генов осуществляется в трех формах: полное доминирование, неполное доминирование и независимое проявление (кодоминирование – пример формирование групп крови человека).

Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.

Закон Моргана (закон сцепленного наследования): гены, локализованные в одной хромосоме наследуются сцеплено. Признаки, гены которых находятся в половых хромосомах, наследуются сцеплено с полом (гемофилия – несвертываемость крови, дальтонизм – неспособность различать красный и зеленый цвета и др.).

Анализ поведения генов свободно скрещивающейся популяции характеризует закон Харди-Вайнберга: любая популяция, в которой распределены пары генов А и а, соответствует соотношению р2 + 2pq + q2, находится в генетическом равновесии (р2
– число гомозиготных особей по доминантному гену с гонотипом АА; q2
– число гомозиготных особей по рецессивному гену с гонотипом аа; pq – число гетерозиготных особей). Доли этих генов в последующих поколениях будут оставаться постоянными, если их не изменит отбор, мутационный процесс или какая-либо случайность.

 

5.5.4. Наследственная и ненаследственная изменчивость

 

Различия между видами и различия между особями внутри вида наблюдаются благодаря всеобщему свойству живого – изменчивости. Выделяют ненаследственную и наследственную изменчивость.

Наследственная (генотипическая) изменчивость связана с изменениями генетипа и передаче этих изменений из поколения в поколение. В зависимости от варьирования генетического материала различают две формы наследственной изменчивости: комбинативную и мутационную. Комбинативная изменчивость связана с образованием у потомков сочетаний генов без изменения их молекулярной структуры, формирующихся при перекомбинации генов и хромосом в процессе полового развития (кроссинговер, независимое расхождение хромосом, случайное сочетание гамет при оплодотворении). Мутационная изменчивость связана с приобретением новых признаков в результате мутаций. Мутацииизменения наследственных свойств организма в результате перестроек и нарушений в генетическом материале организма (хромосомах и генах). Мутация – основа наследственной изменчивости в живой природе. Мутации индивидуальны, возникают внезапно, скачкообразно, ненаправленно, наследуются. По характеру изменения генотипа различают геномные (полиплоидия, анэуплоидия), хромосомные и генные мутации.

Причинами хромосомных мутаций могут являться: потеря хромосомой фрагмента после ее разрыва в двух местах; поворот участка на 180° после разрыва хромосомы (инверсия); обмен двух хромосом своими кусками (транслокация); удвоение участка в хромосоме (дупликация).

Причины генных мутаций: замена одного основания другим (например, А на Г); выпадение одного основания (делеция); включение одного дополнительного основания (дупликация); поворот ДНК на 180° (инверсия).

Следствием генетических и хромосомных мутаций являются, например, болезнь Дауна (трисомия по 21-й хромосоме), синдром Тернера (45 Х0), альбионизм, облысение и др.

Ненаследственная (фенотипическая, модификационная) изменчивость связана с изменениями фенотипа под влиянием внешней среды на экспрессию генов. Генотип остается неизменным. Границы изменчивости признака, возникающей под действием факторов среды, определяется ее нормой реакции. Главные особенности модификационных изменений: кратковременность (не передаются следующему поколению), групповой характер изменений, охватывающий большинство особей в популяции, имеют приспособительный характер.

 

5.5.7. Генная инженерия и клонирование

как факторы дальнейшей эволюции

 

Генетическая (генная)
инженерия
– совокупность методов конструирования лабораторным путем (in vitro) генетических структур и наследственно измененных организмов, т.е. создание новых, не существующих в природе сочетаний генов.

Возникла в нач. 70-х гг. 20 в. Генетическая инженерия основана на извлечении из клеток какого-либо организма гена (кодирующего нужный продукт) или группы генов и соединении их со специальными молекулами ДНК (т. н. векторами), способными проникать в клетки другого организма (главным образом микроорганизмов) и размножаться в них, т.е. создание молекул рекомбинантных ДНК.

Рекомбинантные (чужеродные) ДНК привносят в реципиентный организм новые генетические и физико-биохимические свойства. К числу таких свойств можно отнести синтез аминокислот и белков, гормонов, ферментов, витаминов и др.

Применение методов генетической инженерии открывает перспективу изменения ряда свойств организма: повышение продуктивности, резистентности к заболеваниям, увеличение скорости роста, улучшения качества продукции и др. Животных, несущих в своем геноме рекомбинантный (чужеродный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, – трансгеном. Благодаря переносу генов у трансгенных животных возникают новые качества, а дальнейшая селекция позволяет закрепить их в потомстве и создать трансгенные линии.

Методы генетической инженерии позволяют создавать новые генотипы растений быстрее, чем классические методы селекции и появляется возможность целенаправленного изменения генотипа – трансформации.

Генетическая трансформация заключается главным образом в переносе чужеродных или модифицированных генов в эукариотические клетки. В клетках растений возможна экспрессия генов, перенесенных не только от других растений, но и от микроорганизмов и даже животных.

Получение растений с новыми свойствами из трансформированных клеток (регенерация) возможно благодаря их свойству топитотентности, т.е. способность отдельных клеток в процессе реализации генетической информации к развитию в целый организм.

Клонированиеэто воспроизведение живого существа его неполовых (соматических) клеток. Клонирование органов и ней – важнейшая задача в области трансплантологии, травматологии и других областях медицины и биологии. При пересадке клонированных органов не возникают реакции отторжения и отсутствуют возможные неблагоприятные последствия (например, рак, развивающийся на фоне иммунодефицита). Клонированные органы – это спасение для людей, попавших в автомобильные аварии или иные катастрофы, а также нуждающихся в радикальной помощи вследствие каких-либо заболеваний. Клонирование может дать бездетным людям возможно, иметь своих собственных детей, помочь людям, страдающим тяжелыми генетическими заболеваниями. Так, если гены, определяющие какое-либо наследственное заболевание, содержатся в хромосомах то в яйцеклетку матери пересаживается ядро ее собственной соматической клетки, тогда появится ребенок, лишенный опасных генов, копия матери. Если эти гены содержатся в хромосомах матери, в ее яйцеклетку будет перемещено ядро соматической клетки отца и появится здоровый ребенок, копия отца. Дальнейший прогресс человечества во многом связан с развитием биотехнологии. Вместе с тем необходимо учитывать, что неконтролируемое распространение генно-инженерных живых организмов и продуктов может нарушить биологический баланс в природе и представлять угрозу здоровью человека.

 

Контрольные вопросы

 

  1. Каковы основные биологические уровни организации материи?
  2. В чем проявляются основные свойства живых систем?
  3. Что включается в понятие «биосфера»?
  4. Каковы функции биосферы?
  5. Какие факторы определяют стабильность биосферы?
  6. Что лежит в основе принципов эволюции, воспроизводства и развития живых систем?
  7. Каковы абиогенные факторы, необходимые для возникновения жизни?
  8. В чем заключаются законы наследственности, открытые Г. Менделем?
  9. Какова структура генетического кода живых организмов?

    10. Какие положения включает синтетическая теория эволюции?


     

Метки текущей записи:
, , , , , , , , ,
Автор статьи:
написал 6135 статей.

Оставьте комментарий!

Вы должны быть авторизированы чтобы оставлять комментарии.

 
Запросов: 110 | 0,349 сек
Память: 10.66MB