Динамические и статистические закономерности в природе

21.04.2012 Автор: Рубрика: BIP-IP»

2.9. Динамические и статистические закономерности в природе

 

Рассмотрим два типа физических явлений: механическое движение тел и тепловые процессы. В первом случае движение тел подчиняется законам Ньютона, законам классической механики. Законы классической механики называются динамическими законами, тем самым подчеркивается, что движение происходит под действием тех или иных сил. Динамические законы имеют строго однозначный характер всех связей и зависимостей.

Зная начальное состояние механической системы, можно однозначно определить ее последующие состояния. Динамические закономерности не допускают какой-либо неопределенности системы. Они действуют во всех автономных, мало зависимых от внешней среды системах с относительно малым количеством входящих в нее элементов (например, характер движения планет Солнечной системы).

Во второй половине XIX в. наряду с динамическими в ряде разделов физики получили широкое развитие статистические методы исследования.

Классическим примером является статистическое рассмотрение тепловых термодинамических процессов. В данном случае рассматриваемая система, в отличие от динамической, включает огромное число отдельных элементов (например, полное число молекул
газовой системы). И здесь рассматривается не движение каждой отдельно взятой молекулы, а лишь вероятностные ее характеристики. Затем, используя теорию вероятностей, теорию случайных событий, можно определить усредненные характеристики всей системы и установить статистические закономерности поведения всей системы.

Примером тому может служить установление статистической закономерности между температурой газа и кинетической энергией совокупности молекул системы в молекулярно-кинетической теории газа.

Статистические закономерности действуют во всех неавтономных, сильно зависящих от внешней среды системах, с большим количеством элементов.

При статистических закономерностях данное состояние системы определяет все ее последующие состояния не однозначно, а лишь с определенной вероятностью.

В классической термодинамике в основном рассматриваются изолированные системы, которые не обмениваются с внешней средой энергией. Именно для таких систем установлен возрастания энтропии. Этот имеет простое статистическое толкование. Действительно, энтропия изолированной, т.е. предоставленной самой себе, системы не может убывать. С другой стороны, очевидно, что предоставленная самой себе система будет переходить из менее вероятного состояние в более вероятное. Таким образом, энтропия и вероятность состояний изолированной системы ведут себя аналогично: они могут либо возрастать, либо оставаться неизменными.

В последние годы широкое развитие получили исследования в области термодинамики неизолированных, так называемых открытых систем, т.е. систем, которые обмениваются энергией и веществом с внешним миром. Открытыми являются биологические системы, в частности клетка живых организмов. Для таких систем энтропия может как возрастать, так и убывать.

В изолированных системах естественные процессы идут в направлении от упорядоченных структур к неупорядоченным, т.е. от порядка к беспорядку, хаосу. И в этом смысле можно говорить о том, что энтропия есть мера хаоса.

Для неизолированных, открытых, систем эволюция, например, живых организмов ведет от менее совершенных форм к более совершенным, от меньшего порядка в природе к большему, и в этих системах энтропия может не увеличиваться, а уменьшаться.

Метки текущей записи:
, ,
Автор статьи:
написал 6135 статей.

Оставьте комментарий!

Вы должны быть авторизированы чтобы оставлять комментарии.

 
Запросов: 110 | 0,206 сек
Память: 10.52MB